4 bit 2’s Complement Multiplier
INPUT A: 4 bit 2’s Complement number
INPUT B: 4 bit 2’s Complement number
OUTPUT: the product of A x B represented as a 8 bit 2’s Complement number
You are only allowed to use the basic gates: NOT, AND, OR, XOR. You may however, use these basic gates to build your own custom circuits (i.e. Adder). You are NOT ALLOWED to use Logisim’s built in circuits. Each custom circuit is to be implemented as a sub-circuit as discussed in class.
PART 1: Build a 4 bit controlled 2’s Complement Inverter as a subcircuit named 4BitInverter
PART 2: Build a 8 bit controlled 2’s Complement Inverter as a subcircuit named 8BitInverter
PART 3: Build a 4 Bit UNSIGNED Multiplier as a subcircuit named UnsignedMultiplier
PART 4: Using the 3 subcircuits you built in Parts 1-3, built a 4 bit 2’s Complement multiplier that uses the inversion method discussed in class. Name this circuit: SignedMultiplier
HINTS: INVERSION METHOD:
1) If input A is negative, invert it. If input A is positive, leave it alone.
2) If input B is negative, invert it. If input B is positive, leave it alone.
3) Multiply A and B.
4) If both A and B originally had the same sign (both positive or both negative), do nothing.
5) If A and B originally had different signs (one was positive, the other negative), invert the product.
DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma
Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t
Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th
1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of
1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of