logo Use CA10RAM to get 10%* Discount.
Order Nowlogo
(5/5)

science of Bioinformatics is broadly defined as the application of tools of computation

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

The problem

The science of Bioinformatics is broadly defined as “the application of tools of com- putation and analysis to capture and interpret biological data” (A. Bayat, “Science, medicine, and the future: Bioinformatics”, British Medical Journal, 324 (2002), p.1018-1022). One fundamental part of it is a sequence analysis of DNA and pro- teins, which is often called Genomics. In this assignment, we will learn how to solve two simple problems of genomics: likelihood of gene mutation and gene sequence alignment.

Both problems deal with two gene sequences which can be described as strings of symbols representing four nucleotides (or, bases), A, C, G and T:

The first problem quantifies the difference between two sequences (of possibly unequal length), so that the two can be aligned and considered as mutational variation of one another. The second problem calculates the likelihood that the two sequences are related by mutation.

Problem One: DNA Sequence Alignment

Often a protein function encoded in a genetic sequence is determined by comparing this sequence to another sequence (perhaps belonging to a different organism) which is already known. Comparing, or aligning, the two sequences is a viable method which may ease the task of determining protein functions.

The alignment is performed by calculating the edit-distance of sequences. The edit- distance is also used in coding theory, spell checking, plagiarism detection, version control, computational linguistics and other areas. The method to calculate the edit-distance of two sequences consists in aligning them (allowing gaps to make up for missing symbols since the sequences can have unequal length). Each mismatch or gap in an alignment incurs a penalty. In genomics applications, the following penalty function is often used:

 

Penalty Cost

Gap 2

Mismatch 1

Match 0

 

Two examples next illustrate how this penalty assignment works:

and

The total cost of alignment is just a sum of all penalties; in the above examples, it’s 8 for the first alignment and 7 for the second. The edit-distance is defined as the smallest total penalty among all possible alignments. One can tackle this problem in two ways: a recursive one (relatively simple) and a dynamic programming.

A recursive (naive) approach is quite simple, bit it can be very demanding computa- tionally since the number of possible alignments grows exponentially with the length of sequences. The algorithm of recursive approach for calculating the edit-distance goes like this:

Take two original sequences x , y of the length M , N correspondingly, and denote their edit-distance:

 

edist(x , y)  edist(0, 0), where edist(i, j) is the edit-distance of two suffix sequences x [i..M ] and y[ j..N ] (in other words if x = x0 . . . xM , its suffix sequence x [i..k] is the same as a subsequence  xi . . . xk,  i  ⩾ 0,  k  ⩽  M , and similarly for the suffix sequence y[ j..N ]). The task now is to write down a recursive relation for edist(i, j).

In the optimal alignment, there are three possibilities:

x [i] and y[ j] align with penalty 0 or 1 depending whether they match or not, the remaining contribution is edist(i + 1, j + 1);

there is a gap in the y sequence which contributes penalty 2, and the remaining term comes from aligning x [i + 1..M ] and y[ j..N ] with the contribution edist(i + 1, j);

there is a gap in x sequence (penalty 2), and the remaining alignment contributing edist(i, j + 1).

The optimal alignment for x [i..M ] and y[ j..N ] must be obtained by minimis- ing edist:

 

edist(i, j) = min     edist(i+1, j+1)+(0 or 1), edist(i+1, j)+2, edist(i, j+1)+2}, i < M , j < N .

When i = M , the remaining alignment with an empty sequence contributes 2(N − i), and analogously for j = N case:

edist(M , j) = 2(N − j)   and    edist(i, N ) = 2(M − i)

The above cases are enough to calculate edist(0, 0) for any x and y, and thus calculate edist(x , y). Your task is to implement this algorithm.

A more sophisticated dynamic programming approach allows to overcome the in- efficiency of the recursive approach related to multiple repetitions of the same computation when one moves from one recursive level to the previous one. In a case of two sequences having the length N , the number of recursive calls (almost all of them redundant) grows like 2N . The dynamic programming allows to avoid unnec- essary computation by breaking the original problem into subproblems, storing the result of their solution (when those are obtained for the first time), and then simply re-using those results when they are needed instead of repeating same computation over and over again. This technique is also called memoization. We shall discuss it in the lectures on a simple example. If you decide to employ this approach here, you need research this topic to the greater extent yourself (by using references provided in Bibliography) and apply what you will have learnt.

 

(5/5)
Attachments:

Related Questions

. Introgramming & Unix Fall 2018, CRN 44882, Oakland University Homework Assignment 6 - Using Arrays and Functions in C

DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma

. The standard path finding involves finding the (shortest) path from an origin to a destination, typically on a map. This is an

Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t

. Develop a program to emulate a purchase transaction at a retail store. This program will have two classes, a LineItem class and a Transaction class. The LineItem class will represent an individual

Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th

. SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

. Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Um e HaniScience

805 Answers

Hire Me
expert
Muhammad Ali HaiderFinance

770 Answers

Hire Me
expert
Husnain SaeedComputer science

806 Answers

Hire Me
expert
Atharva PatilComputer science

604 Answers

Hire Me
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30