
CS215: Introduction to Program Design, Abstraction and Problem Solving
(Fall, 2021)

Programming Assignment 3
(100 points)

Today’s Date: Tuesday, November 16
Due Date: December 5

Problem Statement
Write a program that plays a simple card game, named War (also known as Battle in the

United Kingdom) (https://en.wikipedia.org/wiki/War_(card_game)), typically played

ty two players using a standard playing card deck. The objective of the game is to win all

of the cards, and often played by children. The game is played as follows:

1. Each player gets dealt half the deck, 26 cards, and the cards are put face down

in the pile in front of the players.

2. Both player turn their top card face up at the same time. The person with the

higher card wins the draw, and takes both the cards. They are put to the bottom

of the pile, which the player can continue using cards on his/her pile. Aces are

high, and suits are ignored.

3. If the two cards played are of equal value, then there is a "war". Both players

place the next three cards face down and then another card face-up. The owner

of the higher face-up card wins the “war” and adds all the cards on the table to

the bottom of the winner’s pile. If the face-up cards are again equal, then the

battle repeats with another set of face-down/up cards. This repeats until one

player's face-up card is higher than his/her opponent's or one player does not

have enough cards to finish the war then loses immediately.

4. First player to finish all his/her cards loses the game.

5. If a player finishes his/her cards during a “war” without having enough cards to

finish the “war” then loses immediately.

Part 1: Design your own Player class for War Game

For this project, you will be given the complete definition of two classes: Card and

Deck, which you can directly use for your project. The following shows the work you

need to do during Lab 11 class:

Download a zip file named Lab11.zip from the following link to your computer:

(http://www.cs.uky.edu/~yipike/CS215/Lab11.zip) and choose to “Extra All” when you

right click the zip file.

Then, double click the file named Lab11.sln, and it should open the solution, which

contains FIVE source files: card.h, deck.h, card.cpp, deck.cpp and Lab11.cpp. You can

compile and test running the program to understand the purpose of the program. Test

running this program in two different cases: (1) without changing anything in the original

solution you downloaded; (2) activate the statement at line number 28 of Lab11.cpp by

removing the comments sign “//”, then compile and run the program again. What are

the different outputs from above two testing cases? Why? Get familiar with the

https://en.wikipedia.org/wiki/War_(card_game)
http://www.cs.uky.edu/~yipike/CS215/Lab11.zip

definitions of two classes and how to use their member functions so that you can use

them for your Project 3. For example, how to represent a 52-card deck? How to print a

card? How to store the suit and the point of a card? How to create a 52-card deck without

generating two cards of the same suit and point value, which is not allowed in the real

card game? And so on.

After you get familiar with the definitions of classes named Card and Deck, you can

start to design the class named Player, which represents the pile of cards in one

player’s hand and the actions that a player may take during the War game, such as

play_a_card; addCards when a player wins a round and gets all the cards on the table;

dropCards when there is a tie, each play needs to drop 3 cards (face down) on the table,

then play one more card (face up); and so on. The following shows an incomplete design

of this class:

class Player
{
 public:
 // default constructor
 Player();

 // alternative constructor
 Player(vector<Card> ini_cards);

 // return how many cards player holds currently
 int getNumCards() const;

 // player plays one card at the front of cards at hand
 Card play_a_card();

 // player wins and adds winning cards to the end of the pile at hand
 void addCards(vector<Card> winningCards);

 // player drops THREE cards from the front of pile at hand

 // when there is a tie
 vector<Card> dropCards();

 // display cards at player's hand
 void print() const;

 // you are allowed to add other member functions if you want

 private:
 int numCards; // how many cards in player's hand
 ???<Card> cards; // sequence of cards in player's hand

};

In Lab11, you need to complete the declaration of this class in the file named Player.h.

You need to exactly match the design highlighted in blue from the above class

declaration, and create your own design for the private data member highlighted in red.

The private data member named cards, represents the pile of cards in player’s hand.

Which data structure should you choose to store the sequence of cards so that it can

support “removing cards from one side and adding cards from another side of the pile

efficiently”. Till now we have introduced data structures such as arrays, vectors, lists,

stacks and queues. Make your own choice of data structure to replace “???” highlighted

in red and explain to your TA during Lab 11 class why you make such choice. Try to

finish the complete definition of the class named Player during Lab11 class and test

your definition using the main function in Lab11_testPlayer.cpp.

Part 2: Complete the definition of Player class and provide
main function for War Game

You can either make a copy of Lab11.zip and change the file name of Lab11.cpp into

Project3.cpp or create a new empty project, named Project3, then copy and add all

source files you need to Project3 solution.

Provide the complete definition of class named Player, if you have not finished it

during Lab11 class.

Start to write the main function to demonstrate the War game between two players:

1. Display one top card (suit and point) from each player, which represents the card

played by each player in the current round

2. Display how many cards on the pile (on the table)

3. Decide which player wins the current round or it is a tie

➢ If one player wins, display “Player x wins…get all cards from the pile!”

➢ If it is a tie, display “Each player drops three cards (face down) on the pile,

then play one more card (face up)”

4. Display how many cards in player1’s hand and how many cards in player2’s hand

5. After each round, your program should ask the user “Do you want to

continue…for the next round? (N or n to quit the game).

➢ If the user clicks enter key, the game should continue to the next round, back

to step 1

➢ If the user clicks either “N” or “n” to stop the game, your program should

display the following information, then quit. “You choose to quit the game!

Player1 has XXX cards left! Player2 has YYY cards left!” where XXX and

YYY are the number of cards in each player’s hand at that moment

respectively.

6. First player to finish all his/her cards loses the game, and your program should stop

and report who wins the game.

7. Your program should also stop immediately if one player finishes his/her cards

during a “war” without having enough cards to finish the “war”, then report who

wins the game.

8. If both player finish cards at the same time, your program should report a tie game

then stop.

Please download the following sample output file to test running your program, and

especially check THREE testing cases described in the following pdf file:

http://www.cs.uky.edu/~yipike/CS215/PA3Sample.pdf

If you can demonstrate your Project 3 during Lab12 class, you may gain at maximum 5

bonus points for Lab12.

Submission:
Open the link to course Canvas page (https://www.uky.edu/canvas/), and log in to your

account using your linkblue user id and password. Please submit THREE files

(Player.h, Player.cpp and Project3.cpp) through the submission link for

“Project 3”. It is your responsibility to check whether your submission is successful.

If it is not, submit it again till you get the confirmation that your submission is successful.

(Late assignment will be reduced 10% for each day that is late. The

assignment will not be graded (you will receive zero) if it is more than 3 days

late. Note that a weekend counts just as regular days. For example, if an

assignment is due Friday and is turned in Monday, it is 3 days late.)

Always read the grading sheet for each project assignment. It lists typical errors. Check

for these errors before submitting your source code. Please note that your C++

program must compile in order to be graded. If your program cannot pass the

compilation, you will get 0 point.

(The grading sheet is on the next page.)

http://www.cs.uky.edu/~yipike/CS215/PA3Sample.pdf
https://www.uky.edu/canvas/

Grading Sheet for Project Assignment 3

Total: 100 points.

These are example errors. There are other ways to lose points.
C++ programs must compile in order to be graded

Points Deducted

Points

Correctness 60
Provide the correct main function to follow the description of the War

game in the problem statement. You program repeatedly doing the

following until the game is over either by the user or one player runs

out of card:

*Correctly display one top card (suit and point) from each player,

which represents the card played by each player in the current round

*Correctly display how many cards on the pile (on the table)

*Correctly decide which player wins the current round or it is a tie

*Correctly display how many cards in player1’s hand and how many

cards in player2’s hand

*After each round, your program should ask if the user want to

continue and take actions accordingly

*First player to finish all his/her cards loses the game, and your

program should stop and report who wins the game.

* Your program should also stop immediately if one player finishes

his/her cards during a “war” without having enough cards to finish the

“war”, then report who wins the game.

5

5

5

5

5

5

5

Provide the correct declaration of Player class (make your own choice

of the data structure for the private data member named cards in

Player.h

5

Provide the correct implementation of member functions for Player

class in Player.cpp

18

Provide separate .cpp file and header file for class named Player 2

Style 10
Lay out your program in a readable fashion 3
Include comments as specified in the lecture notes 4
User-friendliness in I/O design 3

Testing (No Documentation is required) 30
Pass testing case 1 described in Sample output pdf file: exactly match

the sample output under testing case 1;

Pass testing case 2 described in Sample output pdf file: the user

chooses to quit the program before the game is over and correctly

report how many cards in each player’s hand;

Pass testing case 3 described in Sample output pdf file: your program

needs to continue playing without the interaction with the user, and

correctly decide which player wins the game or it is a tie game.

10

10

10

Your Score

