logo Use CA10RAM to get 10%* Discount.
Order Nowlogo
(5/5)

The + operator in regular expressions is used in some books to denote one or more applications of Kleene star.

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

Exercise 1: Regular Expressions........... 20 marks

Regular Expressions Syntax: The + operator in regular expressions is used in some books to denote one or more applications of Kleene star. However, in other places, such as JFLAP, + denotes the alternation operator, equivalent to  . For the purpose of this assignment, we follow JFLAP and use operator + to denote an alternation. In JFLAP, you can use λ or g to denote the empty string (see Preferences menu).

For parts (i) to (iii), please type each word on a new line. The notation wi wj denotes concatenation of words

wi and wj , and wr denotes the word obtained by reversing w.

(a) Let R1 = 1(1∗ + 2∗ )3∗ (2∗ + 3)1∗2(1 + 3)∗2∗ and R2 = 1∗3(2 + 3)∗2∗ (1 + 3)∗ (1 + 3)∗ be two regular expressions.

Whenever asked to provide words, these must be non-empty ones (and different if more than one).

  1. (2 marks) [E1-Qa1.txt] Give two non-empty words w1 and w2 such that {w1, w2} ⊆ L(R1) ∩ L(R2).

  2. (2 marks) [E1-Qa2.txt] Give two non-empty words w1 and w2 such that {w1, w2} ⊆ L(R1) L(R2).

  • (2 marks) [E1-Qa3.txt] Give two non-empty words w1 and w2 such that {w1, w2} ⊆ L(R2) L(R1).

  1. (1 mark) [E1-Qa4.txt] Give a non-empty word w ∈ L(R1) such that w wr ∈ L(R1).

  2. (1 mark) [E1-Qa5.txt] Give a non-empty word w ∈ L(R1) such that w wr g L(R1).

  3. (1 mark) [E1-Qa6.txt] Give a regular expression R such that L(R) = L(R1) ∪ L(R2).

  • (3 marks) [E1-Qa7.txt] Give a regular expression R such that L(R) = L(R1) ∩ L(R2).

(b) Give regular expressions for the following languages.

  1. (2 marks) [E1-Qb1.txt] L1 = {a3n+2bm+1 | n ≥ 1, m ≥ 0, m mod 2 = 1}.

    1. (2 marks) [E1-Qb2.txt] L2 = L1, where L is the complement of L (assume alphabet Σ = {a, b}).

  • (2 marks) [E1-Qb3.txt] L = {w | w ∈{a, b}∗, |w | mod 3 = 2}, where |w | denotes the length of w.

  1. (2 marks) [E1-Qb4.txt]

L = {bnw1 | n > 1, w1 ∈ (({a, c }∗ ∩ {a, b, c }∗ ) ({b}∗ ∪ {c }))} ∩ {w2c | w2 ∈ {a, b, c }∗}.

Exercise 2: Grammars............ 20 marks

  • Provide regular expressions for the following

    1. (3 marks) [E2-Qa1.txt] Give a regular expression R such that L(R) = L(G1), where G1 is:

S → AcB

A → ac   |  bC   |  g

B → baB   |  caB   |  D C  → bC   |  g

D → aD | b

  1. (3 marks) [E2-Qa2.txt] Give a regular expression R such that L(R) = L(G2), where G2 is:

S  → ACS   |  g

A → aA  |  bA  |  bB B → cB   |  g

C  → bcC   |  acC   |  D D → bD   |  g

  • (2 marks) [E2-Qa3.txt] Give a regular expression R such that L(R) = L(G1) ∪ L(G2).

  1. (2 marks) [E2-Qa4.txt] Give a regular expression R such that L(R) = L(G1) ∩ L(G2).

  • Let G3 = ({S }, {a, b}, Γ, S ) be a grammar, where the set of rules Γ is defined as follows:

S  → aSbSa S  → bSbSa S  → aSbSb S  → g

  1. (4 marks) [E2-Qb1.txt] Does there exist a regular expression R such that L(R) = L(G3)? If it exists, provide such R; otherwise, simply put 0.

  • Let L = {c2n−1amc3b2m+1an | n, m > 0}.

    1. (3 marks) [E2-Qc1.txt] Complete the following context-free grammar G such such L(G ) = L.

S → ccSa | < missing string >

A → aAbb | aBbb B → ccc

Provide the missing string as a single line in the given text file (e.g., if your response is xSSy, submit a file with a single line containing string "xSSy" (of course, without the quotes)).

  • (3 marks) [E2-Qc2.txt] Does there exist a regular expression, DFA, regular grammar or PDA over the alphabet Σ = a, b, c which is equivalent to the language L? (Answer the following question as a string of bits that translate to 1 for yes and 0 for no. For example, if your answer is “no, no, yes, no" give your response as 0010).

Exercise 3: Automata........ 25 marks

  • Answer the following questions based on the finite state automaton M1 present in the JFLAP file

FA-3.a.jK available in Assessments section of the course website. Assume alphabet Σ = {a, b, c, d, e, f }.

  1. (2 marks) [E3-Qa1.txt] Give four strings of length 4 accepted by M1. Please type each string on a new

  2. (2 marks) [E3-Qa2.txt] Give four strings of length 4 rejected by M1. Please type each string on a new

  • (4 marks) [E3-Qa3.txt] Give the language of this machine M1 as a regular

  1. (2 marks) [E3-Qa4.jff] Remove any redundant states from M1 and adjust the transitions Give your answer as a .jff JFLAP file.

  • (4 marks) [E3-Qa5.jff] Create an automaton M2 (deterministic or non-deterministic) such that it accepts the language L1 where L1 = L(M1) L (aca + aba + bab)∗ (a(ba)∗ + c∗a) . Your machine should not accept words that are not in this Give your answer in a .jff JFLAP file.

  • Let L1 = {w | w ∈ {0, 1}∗, w does not contain the substring 101101}.

    1. (4 marks) [E3-Qb1.jff] Give the DFA M3 where L(M3) = L1.

    2. (3 marks) [E3-Qb2.txt] Give the regular expression R such that L(R) = L1.

Notation x, A/X  means a transition where x is the input symbol being read, A is the symbol on top of the stack that is popped, and X  is the symbol pushed onto the stack. Here, λ stands for the “empty” input and g stands for the “empty” stack symbol. Acceptance is by final state and empty stack.

  1. (2 marks) [E3-Qc1.txt] Give 4 strings of length 11 over Σ that are accepted by PDA M4. Remember to type each string on a new

  2. (2 marks) [E3-Qc2.txt] Give 4 strings of length 11 over Σ that are rejected by PDA M4. Remember to type each string on a new

(5/5)
Attachments:

Related Questions

. Introgramming & Unix Fall 2018, CRN 44882, Oakland University Homework Assignment 6 - Using Arrays and Functions in C

DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma

. The standard path finding involves finding the (shortest) path from an origin to a destination, typically on a map. This is an

Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t

. Develop a program to emulate a purchase transaction at a retail store. This program will have two classes, a LineItem class and a Transaction class. The LineItem class will represent an individual

Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th

. SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

. Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Um e HaniScience

909 Answers

Hire Me
expert
Muhammad Ali HaiderFinance

872 Answers

Hire Me
expert
Husnain SaeedComputer science

744 Answers

Hire Me
expert
Atharva PatilComputer science

815 Answers

Hire Me
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30